Abstract

HypothesisLamellar gels are widely formulated in household and cosmetic products because of their eminent ability to improve long-term stability of thermodynamically unstable oil-in-water emulsions. However, despite long study, how and why membrane internal structure and membrane-membrane interactions are modified by the presence of polar and nonpolar oils remains elusive. ExperimentsUsing small- and wide-angle X-ray scattering, dielectric spectroscopy, and field-emission transmission electron microscope, we investigate intermembrane interactions and water-mediated microscopic interfacial properties in lamellar gels and lamellar gel-stabilized oil-in-water emulsions based on cetyltrimethylammonium chloride and 1-hexadecanol. FindingsReducing membrane surface charge density enhances undulation fluctuation disorder, resulting in a crossover of dominant interactions from electrostatic double-layer repulsion to Helfrich interaction. Oil-emulsification induces similar structural impacts to the reduced 1-hexadecanol ratio, confirming preferential dissolution of higher-alcohol in oil phases. An emerging Teubner-Stray scattering component upon emulsification of nonpolar oil evidences that oil droplets and lamellar gels are indirectly connected via bicontinuous microemulsion-type domains. Dielectric spectra reveal strikingly small water permittivity in the lamellar gel and emulsion samples, which is quantitatively explained by a cumulative effect of a dielectrically inert interfacial thin water layer (<1nm) and a highly polarizable bulk-like water layer. This phenomenon appears to be intrinsic to diverse lamellar stack architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call