Abstract

A membrane fraction, rich in brushborder membranes, was prepared from the archinephric duct of the atlantic hagfish (Myxine glutinosa) and the uptake ofd-glucose and other sugars into the membrane vesicles was investigated by a rapid filtration technique. Uptake ofd-glucose was found to be sodium-dependent, phloridzin-inhibitable and osmotically sensitive. A sodium gradient dependent ‘overshoot’ was demonstrated at 25° C as well as at the more physiological temperature of 4°C. The sodium dependentd-glucose transport was inhibited by α-methyl-d-glucoside, but not by 2-deoxy-d-glucose. Furthermore at the same concentration of sugars the initial uptake ofd-glucose was 7.2-fold higher thanl-glucose uptake.d-glucose transport across the membrane in the presence of a sodium gradient was stimulated when SCN− replaced Cl− and inhibited when gluconate replaced Cl−.d-glucose uptake in the presence of a sodium- and potassium gradient was decreased by the addition of valinomycin. In addition, the presence of ad-glucose gradient enhanced sodium uptake into the vesicles as compared to a mannitolgradient. Phloridzin inhibited thed-glucose dependent sodium flux. Thus an electrogenic stereospecific sodium glucose co-transport system, with properties similar to that found in the kidney of higher vertebrates is present in this primitive vertebrate and might participate in secondary-active sugar reabsorption in the archinephric duct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call