Abstract

In the present study we examined the regulation of receptors for endothelin 1 (ET-1) in rat granulosa cells. We examined the localization and regulation of ET receptors in immature rat ovary and the effects of ET-1 on steroidogenesis in cultured rat granulosa cells. The ovaries used in autoradiography were derived from pregnant mare serum gonadotropin and human chorionic gonadotropin-treated immature rats. Granulosa cells were obtained from diethylstilbestrol-treated immature rats and incubated with 125I-ET-1. Granulosa cells were cultured with ET-1 in the presence or absence of ovine follicle-stimulating hormone. The concentrations of sex steroid hormones in conditioned media were measured by radioimmunoassay. The binding site for ET-1 was localized in the granulosa cells, but not in thecal and luteal cells. Follicle-stimulating hormone (FSH) induced a dose-dependent increase in specific binding for ET-1 to cultured rat granulosa cells. In contrast, luteinizing hormone (LH) induced a dose-dependent decrease in specific binding for ET-1 to cultured rat granulosa cells. Conversely, treatment with prolactin and several sex steroid hormones had no effects on the specific binding of ET-1. Treatment with ET-1 inhibited FSH-stimulated accumulation of progesterone and estradiol in cultured rat granulosa cells. The results indicate that both FSH and LH influence the expression of ET-1 receptor, and that ET-1 may play a regulatory role in the ontogeny of the granulosa cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.