Abstract

Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the “Candidatus Scalindua” genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5′-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.

Highlights

  • The Guaymas Basin is a near-shore submarine depression in the central Gulf of California that is characterized by hydrothermally active sediments and hydrocarbon-rich seepages that escape from the sediments at a range of different temperatures (Bazylinski et al, 1988)

  • The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone

  • As the abundance of reduced sulfur compounds might have a substantial impact on the cycling of nitrogen in the Guaymas Basin sediments, we investigated the diversity of the gene encoding a key enzyme of the dissimilatory sulfate-reduction pathway: dissimilatory adenosine-5 -phosphosulfate (APS) reductase

Read more

Summary

Introduction

The Guaymas Basin is a near-shore submarine depression in the central Gulf of California that is characterized by hydrothermally active sediments and hydrocarbon-rich seepages that escape from the sediments at a range of different temperatures (Bazylinski et al, 1988). The hot fluids diffusing upwards lead to accelerated diagenesis by metal sulfide precipitation and thermochemical decomposition of organic material within the sediment, leading to a distinct seeping fluid with relatively higher concentrations of ammonium and low molecular weight hydrocarbons and lower concentrations of free sulfides than other lava vent sites (Kawka and Simoneit, 1987; Bazylinski et al, 1988; Von Damm, 1990) This creates an unusual ecosystem at 2000 m depth that is fueled by conversion of reduced inorganic compounds such as hydrogen sulfide or methane by chemoautotrophs. The Guaymas Basin sediment is generally well-supplied with ammonium (Von Damm, 1990) and there is sufficient evidence of www.frontiersin.org

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call