Abstract

Nitric oxide is produced from the amino acid L-arginine by nitric oxide synthase, which has three known isoforms: (1) endothelial nitric oxide synthase and (2) brain nitric oxide synthase, both of which are constitutive nitric oxide synthase; and (3) inducible nitric oxide synthase. The authors' hypothesis is that after reperfusion injury, endothelial cell dysfunction leads to disruption of nitric oxide synthase-mediated nitric oxide production and that this may in part explain the deleterious effects of ischemia-reperfusion injury on tissue survival and blood reflow in flaps. An experiment was designed to study the effects of ischemia-reperfusion injury on the bioactivity of all three isoforms of nitric oxide synthase. Buttock skin flaps and latissimus dorsi myocutaneous flaps were elevated in eight pigs. Flaps on one side of the animal were randomized to receive 6 hours of arterial ischemia, whereas flaps on the other side served as controls. At 6 hours of ischemia and at 1, 4, and 18 hours after reflow, tissue biopsy specimens were obtained and were processed for both constitutive nitric oxide synthase and inducible nitric oxide synthase enzyme activity on the basis of the L-citrulline assay. In addition, specimens were processed for Western blot analysis of the three isoforms. The authors' results revealed three key findings: first, there was a statistically significant (p < 0.001) decrease in constitutive nitric oxide synthase activity of ischemia-reperfusion-injured flaps as compared with controls in both skin and muscle for all time intervals measured. Second, Western blot analyses of endothelial nitric oxide synthase and brain nitric oxide synthase showed a significant decrease in the signal intensity in ischemic and reperfused tissue as compared with controls. Third, the inducible nitric oxide synthase isoform's activity and protein remained undetectable in both tissue types for all time points measured. The authors' data demonstrated that following ischemia-reperfusion injury in the pig flap model there was a disruption of constitutive nitric oxide synthase expression and activity, which may lead to decreased nitric oxide production. The significant decrease in nitric oxide synthase activity found in the current study may partly explain the mechanism of tissue damage in flaps subjected to ischemia-reperfusion injury. Knowledge of the kinetics of nitric oxide synthase activity under conditions of ischemia-reperfusion injury has important implications for the choice and timing of delivery of therapeutic agents whose goal is to increase the bioavailability of nitric oxide in reperfused tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call