Abstract

AbstractAsian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is the vector of the bacterium Candidatus Liberibacter sp., a quarantine pathogen in citrus production areas such as Australia, Europe, and northeast Brazil, associated with huanglongbing (HLB). The psyllids’ preferred host is Murraya paniculata (L.) Jacq. (Rutaceae), an ornamental plant native to Asia and Oceania, and commonly found in urban areas next to citrus groves around the world. As there are insecticide application restrictions for urban areas, monitoring and use of biological control to suppress ACP are essential for an area‐wide HLB management strategy, especially for production areas predominantly composed of small citrus farms. For this, it is necessary to understand the occurrence cycles of ACP and vegetative flush of the ornamental host. This study characterized the occurrence cycles of M. paniculata flush shoot and accumulated rainfall, and the association with ACP presence (proportion of monitored trees) and abundance (per tree) in a Brazilian urban area free of HLB. A 3‐year time series was constructed using spectral and co‐spectral analysis. Spectral analysis showed the occurrence of at least seven flush shoot cycles of M. paniculata, nearly 10 ACP presence and abundance cycles, and monthly cycles of accumulated rainfall. Cycles of ACP presence were associated with ACP abundance, with ACP presence cycles occurring around 7 days before ACP abundance cycles and the correlation and co‐spectral analyses indicated an almost simultaneous occurrence of the main cycles of M. paniculata flush shoots and ACP occurrence. These findings will facilitate the development of an ACP biological control program based on parasitoid releases in urban areas in HLB‐free citrus groves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.