Abstract

We present a data-driven framework for optimal scenario selection in stochastic optimization with applications in power markets. The proposed methodology relies on the existence of auxiliary information and the use of machine learning techniques to narrow the set of possible realizations (scenarios) of the variables of interest. In particular, we implement a novel validation algorithm that allows optimizing each machine learning hyperparameter to further improve the prescriptive power of the resulting set of scenarios. Supervised machine learning techniques are examined, including kNN and decision trees, and the validation process is adapted to work with time-dependent datasets. Moreover, we extend the proposed methodology to work with unsupervised techniques with promising results. We test the proposed methodology in a realistic power market application: optimal trading strategy in forward and spot markets for an electricity retailer under uncertain spot prices. The results indicate that the retailer can greatly benefit from the proposed data-driven methodology and improve its market performance. Moreover, we perform an extensive set of numerical simulations to analyze under which conditions the best machine learning hyperparameters, in terms of prescriptive performance, differ from those that provide the best predictive accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.