Abstract
Let ℐ be the set of inner functions whose derivative lies in the Nevanlinna class. We show that up to a post-composition with a Mobius transformation, an inner function F ∈ ℐ is uniquely determined by the inner part of its derivative. We also characterize inner functions which can be represented as Inn F′ for some F ∈ ℐ in terms of the associated singular measure, namely, it must live on a countable union of Beurling–Carleson sets. This answers a question raised by K. Dyakonov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.