Abstract

This paper addresses the trajectory tracking control problem of the autonomous underwater vehicle with tracking error constraints and prescribed time convergence. In view of the fact that underwater vehicle is inevitably influenced by unknown external disturbances and input saturation, a disturbance observer is first proposed to achieve prescribed time disturbance attenuation. By virtue of the proposed observer, the observation error will arrive and maintain at a user-defined compact set in a prescribed time, which lays the foundation for subsequent control design. Then, an auxiliary dynamic system with time varying gain is constructed to deal with the input saturation phenomenon. Finally, a robust tracking control scheme is derived by integrating the proposed observer and auxiliary dynamic system into the prescribed performance control architecture, which results in both prescribed time convergence and transient performance constraints in the presence of input saturation and disturbances. Numerical simulation studies are carried out to illustrate the superiority and benefits of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.