Abstract

This paper is concerned with the design of a state feedback control scheme for variable stiffness actuated (VSA) robots, which guarantees prescribed performance of the tracking errors despite the low range of mechanical stiffness. The controller does not assume knowledge of the actual system dynamics nor does it utilize approximating structures (e.g., neural networks and fuzzy systems) to acquire such knowledge, leading to a low complexity design. Simulation studies, incorporating a model validated on data from an actual variable stiffness actuator (VSA) at a multi-degrees-of-freedom robot, are performed. Comparison with a gain scheduling solution reveals the superiority of the proposed scheme with respect to performance and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.