Abstract

This work is concerned with the prescribed performance tracking control for a family of nonlinear nontriangular structure systems under uncertain initial conditions and partial measurable states. By combining neural network and variable separation technique, a state observer with a simple structure is constructed for output-based finite-time tracking control, wherein the issue of algebraic loop arising from a nontriangular structure is circumvented. Meanwhile, by using an error transformation, the developed control scheme is able to ensure tracking with a prescribed accuracy within a pregiven time at a preassigned convergence rate under any bounded initial condition, eliminating the long-standing initial condition dependence issue inherited with conventional prescribed performance control methods, and guaranteeing the predeterminability of convergence time simultaneously. Two simulation examples also demonstrate the effectiveness of the presented control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call