Abstract

This paper is concerned with the tracking control problem for the lower-triangular systems with unknown fractional powers and nonparametric uncertainties. A prescribed performance control approach is put forward as a means of resolving this problem. The proposed control law incorporates a set of barrier functions to guarantee error constraints. Unlike the previous works, our approach works for the cases where the fractional powers, the nonlinearities, and their bounding functions or bounds are totally unknown; no restrictive conditions on the powers, such as power order restriction, specific size limitation or homogeneous condition, are made. Moreover, neither the powers and system nonlinearities nor their bounding functions or bounds are needed. It achieves reference tracking with the preassigned tracking accuracy and convergence speed. In addition, our controller is simple, as it does not necessitate parameter identification, function approximation, derivative calculation, or adding a power integrator technique. At the end, a comparative simulation demonstrates the effectiveness and advantage of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call