Abstract

We design a state-feedback controller to impose prescribed performance attributes on the output stabilization error for uncertain nonlinear systems, in the presence of unknown time-varying delays appearing both to the state and control input signals, provided that an upper bound on those delays is known. The proposed controller achieves pre-specified minimum convergence rate and maximum steady-state error, and keeps bounded all signals in the closed-loop. We proved that the error is confined strictly within a delayed version of the constructed performance envelope. Nevertheless, the maximum value of the output error at steady-state remains unaltered, exactly as pre-specified by the constructed performance functions. Furthermore, the controller does not incorporate knowledge regarding the nonlinearities of the controlled system, and is of low-complexity in the sense that no hard calculations (analytic or numerical) are required to produce the control signal. Simulation results validate the theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.