Abstract
Treatment planning for chronic diseases is a critical task in medical artificial intelligence, particularly in traditional Chinese medicine (TCM). However, generating optimized sequential treatment strategies for patients with chronic diseases in different clinical encounters remains a challenging issue that requires further exploration. In this study, we proposed a TCM herbal prescription planning framework based on deep reinforcement learning for chronic disease treatment (PrescDRL). PrescDRL is a sequential herbal prescription optimization model that focuses on long-term effectiveness rather than achieving maximum reward at every step, thereby ensuring better patient outcomes. We constructed a high-quality benchmark dataset for sequential diagnosis and treatment of diabetes and evaluated PrescDRL against this benchmark. Our results showed that PrescDRL achieved a higher curative effect, with the single-step reward improving by 117% and 153% compared to doctors. Furthermore, PrescDRL outperformed the benchmark in prescription prediction, with precision improving by 40.5% and recall improving by 63%. Overall, our study demonstrates the potential of using artificial intelligence to improve clinical intelligent diagnosis and treatment in TCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.