Abstract

Abstract As we remarked in the preface, although this volume is a sequel to our earlier volume G.I.T. (Gödel’s Incompleteness Theorems), it can be read independently by those readers familiar with at least one proof of Gödel’s first incompleteness theorem. In this chapter we give the notation, terminology and main results of G.I.T. that are needed for this volume. Readers familiar with G.I.T. can skip this chapter or perhaps glance through it briefly as a refresher. §0. Preliminaries. we assume the reader to be familiar with the basic notions of first-order logic—the logical connectives, quantifiers, terms, formulas, free and bound occurrences of variables, the notion of interpretations (or models), truth under an interpretation, logical validity (truth under all interpretations), provability (in some complete system of first-order logic with identity) and its equivalence to logical validity (Gödel’s completeness theorem). we let S be a system (theory) couched in the language of first-order logic with identity and with predicate and/or function symbols and with names for the natural numbers. A system S is usually presented by taking some standard axiomatization of first-order logic with identity and adding other axioms called the non-logical axioms of S.we associate with each natural number n an expression n̅ of S called the numeral designating n (or the name of n).we could, for example, take 0̅, 1̅, 2̅, . . . ,to be the expressions 0,0', 0",..., as we did in G.I.T. we have our individual variables arranged in some fixed infinite sequence v1, v2,..., vn , . . . . By F(v1, ..., vn) we mean any formula whose free variables are all among v1,... ,vn, and for any (natural) numbers k1,...,kn by F(к̅1 ,... к̅n), we mean the result of substituting the numerals к̅1 ,... к̅n, for all free occurrences of v1,... ,vn in F respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call