Abstract

The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d-glutamate and β-methyl d-aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE-A and McyB-A2 , either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond-forming modules incorporating d-glutamate or d-aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.