Abstract

Gamma-aminobutyric acid (GABA) plays a critical role in regulation of gonadotropin-releasing hormone (GnRH) through GABAA receptor (GABAAR). Nitric oxide (NO) production has correlation with GABA and regulates GnRH secretion. This study was performed to examine the mechanisms by which manganese (Mn) accelerate puberty onset involves GABAAR/NO pathway in the preoptic area-anterior hypothalamus (POA-AH) in immature female rats. First, female rats received daily dose of MnCl2 0 (saline), 2.5, 5 and 10 mg/kg b.w by oral gavage during postnatal day (PND) 21–32. Animals administered with 10 mg/kg MnCl2 exhibited earlier puberty onset age and advanced ovary and uterus development than these in saline-treatment group. Furthermore, we found that decrease of GABAAR result in elevated production of nitric oxide synthase1 (NOS1), NO and GnRH in the POA-AH. Second, we recorded the neuronal spikes alternation after perfusion with GABAAR inhibitor bicuculline (BIC), GABAAR agonist isoguvacine (isog), and MnCl2 from the POA-AH in acute brain slices of PND21 rats. Spontaneous firing revealed a powerful GABAAR-mediated action on immature POA-AH and confirm that MnCl2 has a significant effect on GABAAR. Third, we revealed that decrease in NOS1 and NO production by treatment with isog-alone or isog+MnCl2 contribute to the decrease of GnRH in the POA-AH and a delayed puberty onset age compared to treatment with MnCl2-alone. Together, these results suggested that excessive exposure to MnCl2 stimulates NO production through decreased GABAAR in the POA-AH to advance puberty onset in immature female rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.