Abstract

The Quantified Constraint Satisfaction Problem (QCSP) is an extension of the CSP that can be used to model combinatorial problems containing contingency or uncertainty. It allows for universally quantified variables that can model uncertain actions and events, such as the unknown weather for a future party, or an opponent's next move in a game. Although interest in QCSPs is increasing in recent years, the development of techniques for handling QCSPs is still at an early stage. For example, although it is well known that local consistencies are of primary importance in CSPs, only arc consistency has been extended to quantified problems. In this paper we contribute towards the development of solution methods for QCSPs in two ways. First, by extending directional arc and path consistency, two popular local consistencies in constraint satisfaction, to the quantified case and proposing an algorithm that achieves these consistencies. Second, by showing how value ordering heuristics can be utilized to speed up computation in QCSPs. We study the impact of preprocessing QCSPs with value reordering and directional quantified arc and path consistency by running experiments on randomly generated problems. Results show that our preprocessing methods can significantly speed up the QCSP solving process, especially on hard instances from the phase transition region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.