Abstract

Pre-positioning of emergency supplies is one mechanism of increasing preparedness for natural disasters. The goal of this research is to develop an emergency response planning tool that determines the location and quantities of various types of emergency supplies to be pre-positioned, under uncertainty about if, or where, a natural disaster will occur. The paper presents a two-stage stochastic mixed integer program (SMIP) that provides an emergency response pre-positioning strategy for hurricanes or other disaster threats. The SMIP is a robust model that considers uncertainty in demand for the stocked supplies as well as uncertainty regarding transportation network availability after an event. Due to the computational complexity of the problem, a heuristic algorithm referred to as the Lagrangian L-shaped method (LLSM) is developed to solve large-scale instances of the problem. A case study focused on hurricane threat in the Gulf Coast area of the US illustrates application of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call