Abstract
The objective of this study was to determine the effects of lime and micronutrient amendments on growth of seedlings of nine container-grown landscape tree species in two pine bark substrates with different pHs. Acer palmatum Thunb. (Japanese maple), Acer saccharum Marsh. (sugar maple), Cercis canadensis L. (redbud), Cornus florida L. (flowering dogwood), Cornus kousa Hance. (kousa dogwood), Koelreuteria paniculata Laxm. (golden-rain tree), Magnolia ×soulangiana Soul.-Bod. `Lennei' (magnolia), Nyssa sylvatica Marsh. (blackgum), and Quercus palustris Müenchh. (pin oak) were grown from seed in two pine bark substrates with different pHs (pH 4.7 and 5.1) (Expt. 1). Preplant amendment treatments for each of two pine (Pinus taeda L.) bark sources were: with and without dolomitic limestone (3.6 kg·m–3) and with and without micronutrients (0.9 kg·m–3), and with and without micronutrients (0.9 kg·m–3), supplied as Micromax. Seedlings were harvested 12 and 19 weeks after seeds were planted, and shoot dry weight and tree height were determined. The same experiment was repeated using two of the nine species from Expt. 1 and pine bark substrates at pH 5.1 and 5.8 (Expt. 2). Seedling shoot dry weight and height were measured 11 weeks after planting. For both experiments, pine bark solutions were extracted using the pour-through method and analyzed for Ca, Mg, Fe, Mn, Cu, and Zn. Growth of all species in both experiments was greater in micronutrient-amended than in lime-amended bark. In general, adding micronutrients increased nutrient concentrations in the pine bark solution, while adding lime decreased them. Effect of bark type on growth in Expt. 1 was variable; however, in Expt. 2, growth was greater in the low pH bark than in the high pH bark. In general, nutrient concentrations in bark solutions were higher in low pH bark than in high pH bark for both experiments. Under the pH conditions of this experiment, micronutrient additions stimulated growth whereas a lime amendment did not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.