Abstract

Abstract Perhaps the most exciting promise of the Rubin Observatory Legacy Survey of Space and Time (LSST) is its capability to discover phenomena never before seen or predicted: true astrophysical novelties; but the ability of LSST to make these discoveries will depend on the survey strategy. Evaluating candidate strategies for true novelties is a challenge both practically and conceptually. Unlike traditional astrophysical tracers like supernovae or exoplanets, for anomalous objects, the template signal is by definition unknown. We approach this problem by assessing survey completeness in a phase space defined by object color and flux (and their evolution), and considering the volume explored by integrating metrics within this space with the observation depth, survey footprint, and stellar density. With these metrics, we explore recent simulations of the Rubin LSST observing strategy across the entire observed spatial footprint and in specific Local Volume regions: the Galactic Plane and Magellanic Clouds. Under our metrics, observing strategies with greater diversity of exposures and time gaps tend to be more sensitive to genuinely new transients, particularly over time-gap ranges left relatively unexplored by previous surveys. To assist the community, we have made all of the tools developed publicly available. While here we focus on transients, an extension of the scheme to include proper motions and the detection of associations or populations of interest will be communicated in Paper II of this series. This paper was written with the support of the Vera C. Rubin LSST Transients and Variable Stars and Stars, Milky Way, Local Volume Science Collaborations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.