Abstract

A gradient structure (GS) design is a prominent strategy for strength-ductility balance in metallic materials, including Cu alloys. However, producing a thick GS surface layer without surface damage is still a challenging task limited by the available processing technology. In this work, a gradient structure (GS) surface layer with a thickness at the millimeter scale is produced in the Cu-38 wt.% Zn alloy using ultrasonic severe surface rolling technology at room temperature. The GS surface layer is as thick as 1.1 mm and involves the gradient distribution of grain size and dislocation density. The grain size is refined to 153.5 nm in the topmost surface layer and gradually increases with increasing depth. Tensile tests indicate that the single-sided USSR processed alloy exhibits balanced strength (467.5 MPa in yield strength) and ductility (10.7% in uniform elongation). Tailoring the volume fraction of the GS surface layer can tune the combination of strength and ductility in a certain range. The high strength of GS surface layer mainly stems from the high density of grain boundaries, dislocations and dislocation structures, deformation twins, and GS-induced synergistic strengthening effect. Our study elucidates the effect of the thick GS surface layer on strength and ductility, and provides a novel pathway for optimizing the strength-ductility combination of Cu alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.