Abstract

Abstract The COACH project (Cooperation Action Within CCS China-EU 1 ) was launched on November 1st 2006 for a period of 3 years, as part of the 6th framework programme of the European Commission 2 . Gathering 20 partners comprising 8 Chinese partners and 12 European partners, the COACH project was conceived as contributing to the first phase of the Near Zero Emission Coal fired power plants (NZEC) programme, a 3-phase programme developed between the European Union and China, aiming at combating climate change by enabling the deployment in China of thermal power plants equipped with CO 2 capture and storage (CCS) facilities. The objective of the COACH project was to establish the basis for the large-scale use of coal for polygeneration in China with pre-combustion capture, transport and geological storage of CO2. Main efforts were place on a future CCS demonstration operated on an Integrated Gasification Combined Cycle (IGCC) thermal power plant fully equipped for converting and splitting the produced syngas into a hydrogen-rich fuel gas and CO2, and with a subsequent storage of CO2 in either mature hydrocarbon reservoirs (Dagang or Shengli oil provinces), deep saline formations or unmineable coal seams. Focus was made on the emission sources and storage sites located in the part of the Bohai Basin in the Shandong Province. The paper will present the main outcomes of the project as follows : • Structuring the China-EU COACH venture: In order to enabling the sharing of knowledge between European and Chinese COACH partners and building capacity a survey of CCS activities was performed, workshops were organised in EU and China, a cooperative website was created and two one-week long CCS schools were organised in China gathering more than 100 students 2/3 thereof coming from China and the remaining from Europe; • Technical actions and challenges relating to CCS, gasification and polygeneration: A generic IGCC concept implemented with CO2 capture was defined and compared against a plain IGCC based on the GreenGen Phase I system without CO2 capture. A detailed analysis of technologies needed for implementing an option for CO2 capture in an IGCC process with provision for production of electricity and methanol was carried out as well as a cost analysis of both CO2 capture and transport; • Geological assessment and storage sites mapping: A quantitative assessment of the potential storage sites (the Dagang and Shengli oil provinces, the deep saline aquifers nearby and the Kailuan coal mining area) was performed along with a mapping of the possible transport infrastructure (by pipelines or ships) that could be developed to connect CO2 sources to CO2 sites; with regards to storage capacity, the main capacity was found to reside in the deep saline aquifers (several giga tonnes) but would require further geological investigation for delivering definite values. The storage potential in oil fields was found to be much smaller (less than one giga tonne) but could provide opportunities for enhanced oil recovery. Finally, the coals of Kailuan mining area exhibit a high ability to adsorb CO2 and provide enhanced coalbed methane recovery, but their injectivity remains to be verified. • Case studies and recommendations for CCS demonstration in China: By integrating results obtained in the previous tasks dealing with CO2 capture and CO2 storage, two scenarios (one small scale–from 0.1 to 1 million tonnes of CO2 per year, one large scale–2 to 3 million tonnes of CO2 per year) were designed to screen options for a possible CCS demonstration project. These alternative CO2 streams are both considered captured from the GreenGen IGCC power plant in Tianjin and transported to one or more geological formations in the Bohai Bay geological basin for permanent disposal. Storage for the smaller scale scenario could be accommodated in the Dagang or Shengli oilfields. Storage for the larger scale scenario (2–3 million tonnes a year) could be accommodated in the Shengli oilfield province (in a number of fields) or potentially in the saline formations that can be found in the Huimin sub-basin area. For each of these options, a preliminary risk assessment was performed. A thorough cost analysis was performed. Policy and regulation issues pertaining to a shift towards CCS in China. The 3-year targeted cooperative actions under the COACH project have mobilised capacities in China and Europe and paved the ground for subsequent CCS demonstrations in China. The next phase of the China-EU NZEC programme should start in 2010 and deliver FEED studies which should allow starting operating a CCS demonstration in China by 2015.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call