Abstract
We describe a simple quantum algorithm for preparing $K$ copies of an $N$-dimensional quantum state whose amplitudes are given by a quantum oracle. Our result extends a previous work of Grover, who showed how to prepare one copy in time $O(\sqrt{N})$. In comparison with the naive $O(K\sqrt{N})$ solution obtained by repeating this procedure~$K$ times, our algorithm achieves the optimal running time of $\theta(\sqrt{KN})$. Our technique uses a refinement of the quantum rejection sampling method employed by Grover. As a direct application, we obtain a similar speed-up for obtaining $K$ independent samples from a distribution whose probability vector is given by a quantum oracle.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.