Abstract

Space radiation has long been acknowledged as a potential showstopper for long duration manned interplanetary missions. Our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. In an effort to gain more information on space radiation risk and to develop countermeasures, NASA initiated several years ago a Space Radiation Health Program, which is currently supporting biological experiments performed at the Brookhaven National Laboratory. Accelerator-based radiobiology research in the field of space radiation research is also under way in Russia and Japan. The European Space Agency (ESA) has recently established an ambitious exploration program (AURORA), and within this program it has been decided to include a space radiation research program. Europe has a long tradition in radiobiology research at accelerators, generally focussing on charged-particle cancer therapy. This expertise can be adapted to address the issue of space radiation risk. To support research in this field in Europe, ESA issued a call for tender in 2005 for a preliminary study of investigations on biological effects of space radiation (IBER). This study will provide guidance on future ESA-supported activities in space radiation research by identifying the most appropriate European accelerator facilities to be targeted for cooperation, and by drafting a roadmap for future research activities. The roadmap will include a prioritisation of research topics, and a detailed proposal for experimental campaigns for the following 5–10 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call