Abstract

Two spherical nanoparticulate materials were prepared by base-catalyzed sol-gel hydrolysis/self-condensation of the bis-Cinchona alkaloid-phthalazine-based bridged bis(triethoxysilanes). For the purpose of comparing the catalytic properties, two compact materials were also prepared from the same precursors using a fluoride-catalyzed sol-gel process. All materials were characterized by SEM, TEM, solid-state 29Si NMR and 13C NMR, TGA, and FTIR. The prepared silsesquioxane-based materials were studied as potential heterogeneous catalysts for selected enantioselective reactions. The spherical material with regularly incorporated bis-quinine-phthalazine chiral units exhibited good to excellent enantioselectivities in osmium-catalyzed dihydroxylations of alkenes. Enantioselectivities observed in dihydroxylations of aromatic trans-alkenes were as excellent as those observed with the homogeneous catalyst (DHQ)2-PHAL. One compact and one nanoparticulate material was successfully recycled and reused five times without loss of enantioselectivity. Furthermore, both quinine-based and cinchonine-based materials were tested as heterogeneous organocatalysts for chlorolactonization of 4-arylpent-4-enoic acids. The materials showed only moderate enantioselectivities; however, these are the first heterogeneous catalysts for enantioselective chlorolactonization published so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.