Abstract

The paraffin is one of important thermal energy storage materials with many desirable characteristics (i.e., high heat of fusion, varied phase change temperature, negligible supercooling, self-nucleating, no phase segregation and cheap, etc.), but has low thermal stability and flammable. Hence, a novel form-stable phase change materials (PCM) based on high density polyethylene (HDPE)/poly(ethylene-co-vinyl acetate) (EVA)/organophilic montmorillonite (OMT) nanocomposites and paraffin are prepared by twin-screw extruder technique. The structures of the HDPE–EVA/OMT nanocomposites and the form-stable PCM are evidenced by the X-ray diffraction (XRD), transmission electronic microscopy (TEM) and scanning electronic microscope (SEM). The results of XRD and TEM show that the HDPE–EVA/OMT nanocomposites form the ordered intercalated nanomorphology. The form-stable PCM consists of the paraffin, which acts as a dispersed phase change material and the HDPE–EVA/OMT nanocomposites, which acts as the supporting material. The paraffin disperses in the three-dimensional net structure formed by HDPE–EVA/OMT nanocomposites. The thermal stability, latent heat and flammability properties are characterized by thermogravimetry analysis (TGA), dynamic Fourier-transform infrared (FTIR), differential scanning calorimeter (DSC) and cone calorimeter, respectively. The TGA and dynamic FTIR analyses indicate that the incorporation of suitable amount of OMT into the form-stable PCM increase the thermal stability. The DSC results show that the latent heat of the form-stable PCM has a certain degree decrease. The cone calorimeter shows that the heat release rate (HRR) has remarkably decreases with loading of OMT in the form-stable PCM, contributing to the improved flammability properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call