Abstract

The triangular lattice Na xRhO2 contains a 4d Rh element with large spin-orbit coupling, and the electron-electron correlation effect is expected to have some novel physical properties. Here we report NaRhO2 crystal growth by Na2CO3 vapor growth and a series of Na xRhO2 (0.25 ≤ x ≤ 1) crystals prepared using the chemical desodiation method. Na xRhO2 reveals a layer structure with the space group R3̅ m, and the lattice parameter a evolves from 3.09 to 3.03 Å and c from 15.54 to 15.62 Å when x decreases from 1.0 to 0.2. Decreasing potassium concentration leads to a contraction of the RhO6 octahedral layers, which may be attributed to a higher covalency of Rh-O bonds. More important, the metal-insulator transition in Na xRhO2 was observed in resistivity along the ab plane. The conducting mechanism of Na xRhO2 is strongly dependent on x. Two-dimensional variable range hopping (VRH) mechanisms (0.67 ≤ x ≤ 1) and metallic behaviors (0.42 and 0.47) are observed in temperature-dependent resistivity. The origin of this metal-insulator transition was discussed on the basis of the Ioffe-Regel criterion. Our work demonstrates the strong correlation between sodium concentration and physical properties of Na xRhO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.