Abstract

ABSTRACTIn this article, a solid‐state mechanochemical method based on a pan‐mill equipment was used to prepare 60 wt % loading of wood flour (WF) incorporated polypropylene (PP) wood–plastic composite (WPC) with good comprehensive performance. The particle size distribution, crystallization, microstructure, and properties of the prepared WPC were accordingly investigated. The results show that under co‐effects of the strong shear force field of pan milling and the compatibilization of PP grafted maleic anhydride (PP‐g‐MAH), the mixture of PP and WF is effectively pulverized and homogeneously mixed. Meanwhile, the WF particles are adequately activated by exposure of their characteristic functional groups, which is beneficial to the interfacial mechanochemical reaction. PP‐g‐MAH and PP prove to be in situ grafted onto WF particles surface during pan milling, thus resulting in the substantial enhancement in both the dispersion of the added WF fillers in PP matrix and the interfacial bonding. The mechanochemical effects of pan milling could also remarkably promote the heterogeneous nucleation effect of WF particles on PP crystallization and influence the dynamic mechanical behavior of composite. Compared with the unmilled and uncompatibilized composite, the milled and compatibilized WPC material possesses greatly enhanced mechanical performance and shows good application prospects. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43108.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.