Abstract

Three novel tetranuclear vanadium(III) or (IV) complexes bridged by diphenyl phosphate or phosphate were prepared and their structures characterized by X-ray crystallography. The novel complexes are [{V(III)(2)(μ-hpnbpda)}(2){μ-(C(6)H(5)O)(2)PO(2)}(2)(μ-O)(2)]·6CH(3)OH (1), [{V(III)(2)(μ-tphpn)(μ-η(3)-HPO(4))}(2)(μ-η(4)-PO(4))](ClO(4))(3)·4.5H(2)O (2), and [{(V(IV)O)(2)(μ-tphpn)}(2)(μ-η(4)-PO(4))](ClO(4))(3)·H(2)O (3), where hpnbpda and tphpn are alkoxo-bridging dinucleating ligands. H(3)hpnbpda represents 2-hydroxypropane-1,3-diamino-N,N'-bis(2-pyridylmethyl)-N,N'-diacetic acid, and Htphpn represents N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine. A dinuclear vanadium(IV) complex without a phosphate bridge, [(VO)(2)(μ-tphpn)(H(2)O)(2)](ClO(4))(3)·2H(2)O (4), was also prepared and structurally characterized for comparison. The vanadium(III) center in 1 adopts a hexacoordinate structure while that in 2 adopts a heptacoordinate structure. In 1, the two dinuclear vanadium(III) units bridged by the alkoxo group of hpnbpda are further linked by two diphenylphosphato and two oxo groups, resulting in a dimer-of-dimers. In 2, the two vanadium(III) units bridged by tphpn are further bridged by three phosphate ions with two different coordination modes. Complex 2 is oxidized in aerobic solution to yield complex 3, in which two of the three phosphate groups in 2 are substituted by oxo groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.