Abstract

Thiol-stabilized metal nanoparticles possess unique properties in the comparison with larger-scale materials, which enable their use in many promising chemical and biological applications. We have synthesized thiol-coated colloidal gold nanoparticles (AuNP) soluble in non-polar organic solvents by a simplified procedure, in which AuCl 4 - was initially reduced in aqueous phase and then coated with thiol residues and transferred to organic phase. Using the transmission electron micrograph (TEM) imaging, the average diameter of a dodecanethiol-stabilized AuNP was estimated to be 3.75 ± 0.06 nm. Based on the experimental TEM data, a new coarse-grained molecular dynamics model of AuNP was developed. The model was applied for studying self-assembly of AuNPs on a flat graphite surface, enabling further elucidating the structure and packing of the ligand shell around the spherical nanoparticle core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call