Abstract

The objective of the present work was to study the preparation, optimization and characteristics of Huperzine A (Hup A), an effective Traditional Chinese Medicine treatment of Alzheimer's disease (AD), loaded nanostructured lipid carriers (NLC). NLC were successfully prepared by a modified method of melt ultrasonication followed by high pressure homogenization using Cetyl Palmitate (CP) as the solid lipid, Miglyol((R))812 as the liquid lipid, Soybean phosphatidylcholine (Spc) and Solutol HS15 as the emulsifiers. The best formulation was optimized with a three-factor, three-level Box-Behnken design. Independent variables studied were the amount of the mixed lipid, the amount of the emulsifier mixture and lipid/drug ratio in the formulation. The dependent variables were the particle size, entrapment efficiency (EE) and drug loading (DL). Properties of NLC such as the morphology, particle size, zeta potential, EE, DL and drug release behavior were investigated, respectively. As a result, the designed nanoparticles showed nearly spherical particles with a mean particle size of 120 nm and -22.93 + or - 0.91 mV. The EE (%) and DL (%) could reach up to 89.18 + or - 0.28% and 1.46 + or - 0.05%, respectively. Differential scanning calorimetry (DSC) of Hup A loaded NLC indicated no tendency of recrystallisation. In vitro release studies showed a burst release at the initial stage and followed by a prolonged release of Hup A from NLC up to 96 h. The results suggest that the presented Hup A loaded NLC system is a potential delivery system for improving drug loading capacity and controlled drug release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.