Abstract

ObjectiveThe purpose of this work was to explore the enhancement effect of zinc doped mesoporous silica nanoparticles (Zn-MSNs), which could form micromechanical interlocking with resin matrix and sustainably release Zn2+, on the mechanical and antibacterial properties of the dental resin composites. MethodsZn-MSNs were prepared by a sol–gel method, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption/desorption. The mechanical properties of the dental composites reinforced by Zn-MSNs were measured by a universal mechanical testing machine. Antibacterial activities of dental composites were evaluated by both qualitative and quantitative analysis using Streptococcus mutans (S. mutans). The cytotoxicity of the Zn-MSNs filled dental composites was investigated by osteoblasts (OBs). ResultsThe synthesized Zn-MSNs possessed good monodispersity with an average particle size of about 138nm. The mechanical properties of the composites gradually increased with the increase of the content of Zn-MSNs. The flexural strength, flexural modulus, compressive strength and micro-hardness of the composites containing 15wt% Zn-MSNs were 31.21%, 50.47%, 53.83% and 26.79% higher than the samples with no Zn-MSNs, respectively. The antibacterial performance was significantly improved by the addition of Zn-MSNs and the antibacterial rate of the composite with 15wt% of Zn-MSNs reached 100%. Cytotoxicity tests revealed that all the composites were biocompatible during OBs incubation. SignificanceThe prepared Zn-MSNs can effectively improve the mechanical and antibacterial properties of the dental resin composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call