Abstract

At present, it is very necessary to select and prepare suitable positive and negative electrode materials to fabricate high-performance asymmetric supercapacitors. Metal-organic frameworks (MOFs) have garnered significant attention in the energy storage field due to their high conductivity. As a branch, the zirconium organic framework (UIO-66) is a promising porous material due to its large specific surface area and abundant Zr centers. Graphene oxide (GO) and MXene are very suitable as substrate materials for conducting an MOF due to their abundant active sites and adjustable interlayer distance. The GO/MXene@NiZrP prepared through an in situ composite of GO and Mxene with the hydrothermal method and calcining method showed excellent electrochemical performance. Compared with the precursor UIO-66, the specific capacitance of the final product GO/MXene@NiZrP increases more than ten times, mainly because of its special layered porous structure, and GO/MXene@NiZrP has a larger specific surface area, pore volume, and surface defects caused by unstable Zr4+ than those of UIO-66. Using GO/MXene@NiZrP as the positive electrode and biochar (BC) as the negative electrode, an asymmetric supercapacitor, BC//GO/MXene@NiZrP, is assembled. After 10,000 cycles at a current density of 10 A g-1, the capacitance retention remains at 83.3%, showing excellent cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.