Abstract

Zinc tungstate (ZnWO4) was previously used as a photocatalyst. In this paper, for the first time as an sonocatalyst, the performance of ZnWO4 for sonocatalytic degradation of meloxicam (MEL) under ultrasonic irradiation were studied. Firstly, ZnWO4 nanomaterials were synthesized at different acidity (pH = 5, 6, 7, 8, 9) via the hydrothermal method. Utilizing SEM, XRD and EDS techniques to characterize composition and morphology of each product, the same crystal forms, but different morphologies (nano-sheet, nano-microspheres or nano-rod) of ZnWO4 could be obtained. Secondly, the sonocatalytic activities of ZnWO4 on degradation of MEL were studied. It was found that the degradation ratio varied with the synthetic pH values, with ZnWO4 under synthetic pH = 6 exhibiting the best sonocatalytic performance (75.7%). Whilebeing synthesized at this pH value, ZnWO4nano-microspheres had the largest BET surface area (27.068 m2/g), the smallest particle size (40-60 nm) so as to provide more active sites on its surface, which were able to produce more reactive oxygen species (ROS) and holes under ultrasonic irradiation. These ROS and holes had a positive effect on the degradation of MEL into CO2, H2O and inorganic. Thirdly, various influential factors including ultrasonic power intensity, ultrasonic time, catalyst addition dosage, initial concentration of MEL solution and reusability of catalyst were also explored. Under the condition of 10 mg/L MEL concentration, 20 mg catalyst dosage, 120 min irradiation time, 0.278 W/cm2 ultrasonic power intensity, the degradation ratio on MEL reached 75.7%. Finally, the presence of hydroxyl radical (OH) and singlet molecular oxygen (1O2) in the reaction was confirmed by adding ROS scavenger. The experimental results suggested that ZnWO4 nanoparticle could be used not only as an effective photocatalyst, but also, under the condition of ultrasonic irradiation, a promising sonocatalyst for degradation of organic pollutants in aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.