Abstract

A novel bifunctional carbon dot (CD)-based sensing platform was constructed for detection of tetracyclines (TCs) and Al3+. The fluorescence CDs were fabricated by hydrothermal method using phenylenediamine (p-PD) and ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) as precursors. The obtained prepared CDs show bright yellow fluorescence (y-CDs, EX = 400nm and Em = 556nm), high fluorescence quantum yield (QY = 21.55 ± 0.06%), and preferable optical stability. TCs can directly quench the fluorescence of y-CDs based on static quenching characteristics and a smallinternal filtration effect (IEF). By adding Al3+ to the y-CDs + TCs system, the fluorescence is partly recovered because TCs escape from the surface of the y-CDs and form a more stable chelate with Al3+. The sensing platform displays good selectivity and high sensitivity to TCs and Al3+ with low detection limits of 0.057-0.23μM and 0.091μM, respectively. Importantly, this sensing platform has enabledthe detection of TCs and Al3+ in milk samples with satisfactory recoveries and RSDs, confirming the reliability and feasibility of this method. Combining with low toxicity and preferable biocompatibility, the y-CDs are extended to cellular imaging and detection of CTC and Al3+ in A549 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.