Abstract

Three types of wrappped nanoscale zero-valent iron (W-nZVI) with different coatings including agar, starch, and carboxyl methyl cellulose, were synthesized using a rheological phase reaction method. The structure and morphology of W-nZVI particles were characterized by scanning electron microscopy and transmission electron microscopy. Batch degradation experiments exhibited that W-nZVI dosage, initial trichloroethylene (TCE) concentration and solution pH had significant effects on TCE dechlorination. Experimental results proved that the highest dechlorination efficiency was obtained within 320 minutes for 10 mg/L of TCE at the optimal pH of 5.0 and W-nZVI dosage of 0.5 g/L. Kinetic study revealed that TCE dechlorination by W-nZVI in aqueous solution obeyed the quasi-first-order reaction kinetics. The product after the reaction could be easily separated by the permanent magnet for re-use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call