Abstract
The research was carried out to analyze the combined and mechanical properties of polypropylene (PP)/fly ash (FA)/waste stone powder (WSP) composite materials. PP, FA and WSP were mixed and prepared into PP100 (pure PP), PP90 (90 wt% PP + 5 wt% FA + 5 wt% WSP), PP80 (80 wt% PP + 10 wt% FA + 10 wt% WSP), PP70 (70 wt% PP + 15 wt% FA + 15 wt% WSP), PP60 (60 wt% PP + 20 wt% FA + 20 wt% WSP) and PP50 (50 wt% PP + 25 wt% FA + 25 wt% WSP) composite materials using an injection molding machine. The research results indicate that all PP/FA/WSP composite materials can be prepared through the injection molding process and there are no cracks or fractures found on the surface of the composite materials. The research results of thermogravimetric analysis are consistent with expectations, indicating that the preparation method of the composite materials in this study is reliable. Although the addition of FA and WSP powder cannot increase the tensile strength, it is very helpful to improve the bending strength and notched impact energy. Especially for notched impact energy, the addition of FA and WSP results in an increase in the notched impact energy of all PP/FA/WSP composite materials by 14.58-22.22%. This study provides a new direction for the reuse of various waste resources. Moreover, based on the excellent bending strength and notched impact energy, the PP/FA/WSP composite materials have great application potential in the composite plastic industry, artificial stone, floor tiles and other industries in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.