Abstract

Low-pressure organometallic chemical vapour deposition (OMCVD) and dip-coating of VO2 films using vanadyl tri(isobutoxide) as the starting material were investigated. In OMCVD, discontinuous VO2 films, which were composed of fine needle crystals, formed under very limited conditions, around 600° C with a flow rate of oxygen gas of 0.2 to 0.5 cm3 sec−1. However, very uniform and tightly packed VO2 films were grown by deposition at 300 to 700° C in the absence of oxygen gas and subsequent annealing in nitrogen at 500° C for 2 h. The films exhibited a sharp semiconductor to metal transition at 60 to 70° C, accompanied by a change in the resistivity by four to five orders of magnitude. In dip-coating with two-step heat-treatments (300° C for 1 h in nitrogen and subsequently 500° C for 2 h in nitrogen), of the gel films formed from VO(O-i-Bu)3-H2O-i-PrOH system, uniform (0 1 1) oriented VO2 films were formed. A transition in the electrical conductivity by two to two and a half orders of the magnitude was found to occur around 60° C. Before and after the transition, no distinct variation in the XRD pattern was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.