Abstract
Poly(vinyl chloride), with ultralow molecular weight, produced by free radical polymerization either at high temperature or in the presence of chain transfer agents, is widely used as special resins and polymer process additives. This paper reports a new process, called self-stabilized precipitation polymerization, in which the polymerization of vinyl chloride monomer (VCM) is conducted in hydrocarbon diluents without addition of any suspending agent or emulsifier. The merits of this novel strategy include: (1) PVC resins with ultra-low number-average molecular weight (Mn) from 4000 to 15000, which is much lower than Mn of those prepared by conventional suspension and emulsion polymerizations, (2) sub-micrometer PVC particles with near spherical morphology, and (3) the very simple post-polymerization separation process. Under mild stirring, polymerization proceeds stably and smoothly. The influences of main process factors, such as solvents, initiator and monomer concentrations, polymerization time, and temperature on both particle morphology and Mn of the polymer products are investigated systematically. The molar ratio of -CH2-CHCl-/-CH=CH-CH2CHCl, a good indicator of structural defects, is about 1000/0.1 which means the low molecular weights do not result from chain transfer to the monomers. Then the mechanism of this polymerization is proposed. In summary, this novel polymerization technology provides a straightforward method for preparing PVC particulate products with low Mn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.