Abstract

Novel photoluminescent nanocomposite sheets were prepared for simple commercial manufacturing of transparent and luminous photochromic smart windows. A simple physical integration of lanthanide-doped strontium aluminium oxide (LdSAO) nanoparticles into recycled polyethylene (PE) waste produced a smart nanocomposite with persistent phosphorescence and photochromic properties. Because the nanoparticle form of LdSAO is important for developing transparent materials, LdSAO nanoparticles were well dispersed in the PE matrix. Both the morphologies and chemical compositions of the LdSAO nanoparticles and LdSAO-containing luminescent PE sheets were investigated. Both LdSAO-free and photoluminescent PE sheets were colourless in normal daylight. However the LdSAO-containing PE luminescent samples only exhibited a brilliant green colour under ultraviolet (UV) light and a greenish-yellow colour in the dark as verified by Commission Internationale de l'éclairage laboratory parameters. Both absorbance and emission bands were monitored at 377 and 436/517 nm, respectively. The LdSAO-containing PE luminescent sheets were compared with the LdSAO-free sample using both photoluminescence spectroscopy and for their mechanical properties and were found to have improved scratch resistance, UV protection, and superhydrophobic activity. Due to the added LdSAO, photoluminescence, decay, and lifetime spectral tests confirmed its photochromic fluorescence and long-lasting phosphorescence characteristics. The PE@LdSAO nanocomposite sheets displayed UV protection, photostability, hydrophobicity, and excellent durability compared with the blank LdSAO-free PE sheet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.