Abstract

Polysiloxane/tungsten-doped vanadium dioxide [VO2(W)] nanocomposite coatings were prepared by de-agglomerating and modifying the self-made VO2(W) particles with 3-methacryloxypropyltrimethoxysilane in butyl acetate, then mixing MPS-functionalized VO2(W) nanoparticles with polysiloxane oligomers and curing the product at ambient temperature with the aid of 3-aminopropyltriethoxysilane. The VO2(W) particles were obtained by hydrolysis of vanadyl sulfate mingled with tungstate dopant and subsequent calcination. The structure and properties of the VO2(W) particles and nanocomposite coatings were characterized by X-ray diffraction analysis, differential scanning calorimetry, visible-near infrared spectroscopy, pendulum hardness tests, and nanoindentation. The effects of the synthesis conditions and the de-agglomeration process on the properties of the VO2(W) particles were investigated. Crystalline VO2(W) particles were obtained only with an appropriate amount of air and temperature during the calcination step and were easily reduced to nanometer size by bead-milling. The obtained nanocomposite coatings exhibited high transparency, good thermochromic performance, and ultra-high hardness (~1.0GPa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.