Abstract

Glass with composition of 51SiO 2–24.5Al 2O 3–23MgO–1.5K 2O doped with Co 2+ ions was prepared by conventional melting method. The glass sample was heated at 900 °C for 360 min under atmosphere, and the powder XRD measurement showed that crystalline phase successfully precipitated in the sample. As is compared with standard JCPDS card, the crystalline phase identified as a mixture of zirconium titanate (ZrTiO 4) and one of the compounds of magnesium aluminum oxide. The crystallite size was confirmed by transmission electron microscope (TEM) observation; it could be estimated as 30 nm in diameter from the TEM image. Based on the area ratio of crystalline phase and residual glass phase, the precipitated crystallite phase volume ratio can be estimated to be not higher than 30% in the Co 2+ doped glass ceramic sample. The absorption coefficient at 1.54 μm for transparent glass ceramic sample is clearly higher than that in base glass, which can be explained by the fact that Co 2+ ions entered into the precipitated nano-sized crystal phase and led to higher absorption coefficient at 1.54 μm for tetrahedral coordinated Co 2+ ion. Consequently, the Co 2+ doped transparent glass ceramic sample with thickness of 0.35 mm was used as a saturable absorber for 1.54 μm Er-glass laser oscillation, and Q switched pulses with pulse energy of 40 mJ, pulse width of 42 ns, and peak power of 0.95 mW were shown in the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.