Abstract
In this study, cellulose pulp and urea were used to synthesize cellulose carbamate (nitrogen content reaches 4.5%) by low-cost and environmentally friendly solid-liquid phase method. Cellulose carbamate fluid was prepared by using sodium hydroxide aqueous solution as solvent. The fluid was regenerated and formed in a coagulation bath, and finally a regenerated cellulose membrane with high transparency and separation ability was obtained. The simple chemical treatment of cellulose not only greatly increased the mass fraction of cellulose dissolution (It has reached 15%) and retains the original crystal form and thermal stability of cellulose. The surface of the membrane was relatively dense, and the inside has regular microchannel. The factors affect the transparency and water flux of regenerated cellulose membranes were discussed by orthogonal experimental range analysis. The ability of the regenerated cellulose membrane to reject dyes was tested. The results showed that the rejection of methyl blue and congo red reached 100%, and the rejection rate of methyl orange reached 60%. The oil/water separation ability and the anti-pollution ability of the regenerated cellulose membrane were tested. The oil/water separation effect reached 100%. This membrane may have application prospect in water treatment, biotechnology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.