Abstract

Organic/inorganic hybrids were prepared by catalytic hydrolysis and subsequent polycondensation of tetra-n-butyl titanate (TnBT) in shell layers grafted on core particles. The core particles were synthesized by emulsifier-free emulsion polymerization of styrene, N-n-butyl-N-2-methacryloyloxyethyl-N,N-dimethylammonium bromide (C4DMAEMA), and 2-chloropropionyloxyethyl methacrylate using 2,2′-azobis(2-amidinopropane) dihydrochloride as an initiator. The core diameters were controlled in the range of 70–550 nm by adjusting a C4DMAEMA feed concentration. The core–shell particles were prepared by surface-initiated activator generated electron transfer–atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA). The sizes of core–shell particles were found to increase monotonically with an increase in a DMAEMA concentration. The hybrid particles were fabricated by adding TnBT into a water/ethanol dispersion of core–shell particles. The amounts of titania deposited increased in proportion to the grafted amounts of poly[2-(N,N-dimethylamino)ethyl methacrylate] on the core particles. The X-ray diffraction measurement revealed that the hollow titania particles obtained by heat treatment of hybrids have an anatase crystallographic phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call