Abstract

TiO2 microsphere with tunable pore and chamber size are prepared by a simple solventhermal method and used as catalyst for the photocatalytic CO2 reduction. It is found that the hollow microsphere with relative lower surface area of 73.8 m2 g−1 exhibits increased pore size of 18.1 nm and cavity structure, leading to higher CO2 diffusion coefficient of 5.40 × 10−5 cm2 s−1 compared with the solid and yolk/shell microspheres. Therefore, the hollow microsphere possesses more accessible sites for CO2 adsorption, which finally gives rise to the enhanced CO production rate of 10.9 ± 0.7 μmol g−1 h−1 under simulated sunlight, which is respectively 1.6 and 1.4 times higher than that of solid and yolk/shell microspheres. Electron dynamic study further demonstrates that hollow microsphere shows the highest photocurrent density and the lowest charge recombination among three microspheres structure, which is attributed to the swift CO2 diffusion providing fresh CO2 molecules to rapidly scavenge the photo-generated electrons and finally leading to the excellence catalytic reduction performances. This method could be adopted as a general strategy to prepare high performance TiO2 catalysts with desirable structural qualities for the photocatalytic CO2 reduction under nature sunlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.