Abstract

The excellent biocompatibility of titanium and its alloys used, for example, for medical devices, is associated with the properties of their surface oxide. For a better understanding of the tissue reaction in contact with the oxide layer, knowledge of the chemical and physical properties of this layer is of increasing interest. In this study, titania films were produced on cp-Ti and Ti6Al4V substrates by thermal oxidation, anodic oxidation, and by the sol-gel process. The thickness and structure of the films produced under different conditions were determined by ellipsometry, infrared spectroscopy, and X-ray diffraction measurements. The corrosion properties of these layers were investigated by current density-potential curves under physiological conditions. The oxide layers produced on cp-Ti and Ti6Al4V by thermal oxidation consist of TiO(2) in the rutile structure. For the anodized samples the structure of TiO(2) is a mixture of amorphous phase and anatase. The structure of the coatings produced by the sol-gel process for a constant annealing time depends on the annealing temperature, and with increasing temperature successively amorphous, anatase, and rutile structure is observed. Compared to the uncoated, polished substrate with a natural oxide layer, the corrosion resistance of cp-Ti and Ti6Al4V is increased for the samples with an oxide layer thickness of about 100 nm, independent of the oxidation procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call