Abstract

Biodegradable of polylactic acid (PLA), polybutylene adipate-co-terephthalate (PBAT) and polybutylene succinate (PBS), which were biodegradable aliphatic polyesters, composite films were contained with titanium dioxide (TiO2) as a photocatalyst to evaluate the photocatalytic activity of bidegradable composite films for toluene removal. The synthesized TiO2 was prepared by sol-gel method between titanium isopropoxide with acetic acid. To form the anatase structure, it was calcined at 500°C. TiO2 were added to PLA/PBAT/PBS as a biopolymer blend at 0, 5 and 10 wt% .The TiO2/Bio-composite films were fabricated via blown film technique to produce 40 μm films. Photocatalytic activity efficiency of TiO2/Bio-composite films was performed in an annular closed system under UV light. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the biopolymer matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the biopolymer matrix. The X-ray diffraction (XRD) ensures the deposition of TiO2 as crystalline anatase phase. In addition, the photocatalytic results shown that the toluene removal efficiencies increased with an increasing TiO2 dosages at 0 wt%, 5 wt%, and 10 wt% , respectively. As aspects, the photocatalytic degradation results showed the highest tolune photocatalytic degradation efficiency of 52.0% at 10 wt% TiO2 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.