Abstract

Magnetron sputtering technology benefits from an easy process parameter adjustment strategy, good experimental reproducibility, and high-quality film formation; thus, it is widely used in thin-film electronic devices. In the present work, the thickness and morphology of the TiO2 electron transport layer were controlled by magnetron sputtering time, and based on this technology, planar heterojunction perovskite solar cells were prepared. The results showed that with an increase in the sputtering time, the surface roughness of the TiO2 film decreased, and the electrical homogeneity and square resistance of the film increased. Especially, the film transmittance showed a maximum value of 82.29% at 45 min of deposition, and the so prepared perovskite solar cells exhibited the highest photoelectric conversion efficiency of up to 12.42%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call