Abstract

ABSTRACT 3DOMLaFeO3 was prepared by template method combined with sol-gel method using monodisperse polystyrene (PS) microspheres as template, and Ag/3DOMLaFeO3 perovskite catalyst was prepared by impregnation method combined with sodium borohydride reduction method. The catalysts were characterised by means of TG, XRD, SEM, BET, XPS, UV-vis DRS, etc. The photo-Fenton catalytic performance, stability and catalytic reaction mechanism of Ag/3DOMLaFeO3 were studied with penicillin G potassium (PEN G) as the model pollutant. The results indicated that the as-prepared Ag/3DOMLaFeO3 exhibited a three-dimensional ordered macroporous (3DOM) structure, and the light capture and mass transfer were enhanced through abundant pores and large specific surface area. Based on the surface plasmon resonance effect (SPR), Ag loading enhanced the absorption of the material in the visible light region, and inhibited the recombination of photogenerated carriers, which improved the photocatalytic performance of 3DOMLaFeO3 under visible light. Under the conditions of hydrogen peroxide dosage of 1.5 mL·L−1, initial pH of 5, PEN G initial concentration of 100 mg·L−1, catalyst dosage of 300 mg·L−1, xenon lamp irradiation, the degration ratio of PEN G and the removal rate of TOC reached 99.99% and 85.45% within 120 min, respectively. In addition, it had a wide range of pH application, excellent stability and practical application value. The quenching experiment and ESR test showed that ·OH and ·O2 − were the reasons for high catalytic degradation. The least square method was used to fit the experimental data, and the results displayed that the degradation of PEN G was approximately in line with the first-order kinetic reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call